Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 250, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587660

RESUMO

Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.


Assuntos
Realidade Aumentada , Pele , Medicina de Precisão , Eletrônica , Atenção à Saúde
2.
Microbes Infect ; 25(8): 105187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37517605

RESUMO

Comprehending the morphological disparities between SARS-CoV-2 and SARS-CoV viruses can shed light on the underlying mechanisms of infection and facilitate the development of effective diagnostic tools and treatments. Hence, this study aimed to conduct a comprehensive analysis and comparative assessment of the morphology of SARS-CoV-2 and SARS-CoV using transmission electron microscopy (TEM) images. The dataset encompassed 519 isolated SARS-CoV-2 images obtained from patients in Italy (INMI) and 248 isolated SARS-CoV images from patients in Germany (Frankfurt). In this paper, we employed TEM images to scrutinize morphological features, and the outcomes were contrasted with those of SARS-CoV viruses. The findings reveal disparities in the characteristics of SARS-CoV-2 and SARS-CoV, such as envelope protein (E) 98.6 and 102.2 nm, length of spike protein (S) 10.11 and 9.50 nm, roundness 0.86 and 0.88, circularity 0.78 and 0.76, and area sizes 25145.54 and 38591.35 pixels, respectively. In conclusion, these results will augment the identification of virus subtypes, aid in the study of antiviral medications, and enhance our understanding of disease progression and the virus life cycle. Moreover, these findings have the potential to assist in the development of more accurate epidemiological prediction models for COVID-19, leading to better outbreak management and saving lives.


Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2/metabolismo , Vírus/metabolismo , Antivirais/uso terapêutico , Microscopia Eletrônica de Transmissão
3.
Sci Rep ; 13(1): 3180, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823237

RESUMO

Fibrosarcoma is a rare type of cancer that affects cells known as fibroblasts that are malignant, locally recurring, and spreading tumor in fibrous tissue. In this work, an iron plate immersed in an aqueous solution of double added deionized water, supplemented with potassium permanganate solution (KMnO4) was carried out by the pulsed laser ablation in liquid method (PLAIL). Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using different laser wavelengths (1064, 532, and 266 nm) at a fluence of 28 J/cm2 with 100 shots of the iron plate to control the concentration, shape and size of the prepared high-stability SPIONs. The drug nanocarrier was synthesized by coating SPION with paclitaxel (PTX)-loaded chitosan (Cs) and polyethylene glycol (PEG). This nanosystem was functionalized by receptors that target folate (FA). The physiochemical characteristics of SPION@Cs-PTX-PEG-FA nanoparticles were evaluated and confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods. Cell internalization, cytotoxicity assay (MTT), apoptosis induction, and gene expression of SPION@Cs-PTX-PEG-FA were estimated in fibrosarcoma cell lines, respectively. In vivo studies used BALB/c tumor-bearing mice. The results showed that SPION@Cs-PTX-PEG-FA exhibited suitable physical stability, spherical shape, desirable size, and charge. SPION@Cs-PTX-PEG-FA inhibited proliferation and induced apoptosis of cancer cells (P < 0.01). The results of the in vivo study showed that SPION@Cs-PTX-PEG-FA significantly decreased tumor size compared to free PTX and control samples (P < 0.05), leading to longer survival, significantly increased splenocyte proliferation and IFN-γ level, and significantly decreased the level of IL-4. All of these findings indicated the potential of SPION@Cs-PTX-PEG-FA as an antitumor therapeutic agent.


Assuntos
Antineoplásicos , Fibrossarcoma , Nanopartículas de Magnetita , Nanopartículas , Animais , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paclitaxel/química , Polímeros , Nanopartículas de Magnetita/química , Antineoplásicos/uso terapêutico , Polietilenoglicóis/química , Fibrossarcoma/tratamento farmacológico , Ácido Fólico/química , Nanopartículas/química , Linhagem Celular Tumoral
4.
Electron. j. biotechnol ; 52: 21-29, July. 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1283484

RESUMO

BACKGROUND: Super-paramagnetic iron oxide nanoparticles (SPION) contain a chemotherapeutic drug and are regarded as a promising technique for improving targeted delivery into cancer cells. RESULTS: In this study, the fabrication of 5-fluorouracil (5-FU) was investigated with loaded Dextran (DEXSPION) using the co-precipitation technique and conjugated by folate (FA). These nanoparticles (NPs) were employed as carriers and anticancer compounds against liver cancer cells in vitro. Structural, magnetic, morphological characterization, size, and drug loading activities of the obtained FA-DEX-5-FUSPION NPs were checked using FTIR, VSM, FESEM, TEM, DLS, and zeta potential techniques. The cellular toxicity effect of FA-DEX-5-FU-SPION NPs was evaluated using the MTT test on liver cancer (SNU-423) and healthy cells (LO2). Furthermore, the apoptosis measurement and the expression levels of NF-1, Her-2/neu, c-Raf-1, and Wnt-1 genes were evaluated post-treatment using flow cytometry and RT-PCR, respectively. The obtained NPs were spherical with a suitable dispersity without noticeable aggregation. The size of the NPs, polydispersity, and zeta were 74 ± 13 nm, 0.080 and 45 mV, respectively. The results of the encapsulation efficiency of the nano-compound showed highly colloidal stability and proper drug maintenance. The results indicated that FA-DEX-5-FU-SPION demonstrated a sustained release profile of 5-FU in both phosphate and citrate buffer solutions separately, with higher cytotoxicity against SNU-423 cells than against other cells types. These findings suggest that FA-DEX-SPION NPs exert synergistic effects for targeting intracellular delivery of 5-FU, apoptosis induction, and gene expression stimulation. CONCLUSIONS: The findings proved that FA-DEX-5-FU-SPION presented remarkable antitumor properties; no adverse subsequences were revealed against normal cells.


Assuntos
Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fluoruracila/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Polímeros , Expressão Gênica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Apoptose/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Preparações de Ação Retardada , Nanopartículas/administração & dosagem , Nanopartículas de Magnetita , Citometria de Fluxo
5.
Life (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478036

RESUMO

BACKGROUND: Advanced nanobiotechnology provides safe and efficient drug delivery systems to deliver chemotherapy that targets cancer cells efficiently. METHODS: A polymeric-magnetic nanocarrier was composed of a dextran (DEX) shell, a superparamagnetic iron oxide (SPION) core and was conjugated with folate (FA) to carry the anticancer drug vincristine (VNC) in Tera-1 testicular tumor cells. The molecular mechanisms by which apoptosis was induced were analyzed using flow cytometry and qPCR, which exhibited anticancer activity of nanoparticles (NPs). RESULTS: This nanocarrier revealed a controlled release of VNC in citrate and phosphate buffer solutions that were maintained at pH 5.5 and pH 7.4, respectively. The Inhibitory concentration (IC50) values were greater than 5 mg/mL and displayed ten times higher cytotoxicity than the comparable free drug concentration. The Caspase-9 and P53 expressions were increased, whereas P21 and AKt1 decreased noticeably in the treated cells. The results point to the possible activation of apoptosis following treatment with NPs loaded with vincristine.

6.
IET Nanobiotechnol ; 13(6): 597-601, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31432792

RESUMO

Nanobiotechnology is a promising field concerned with the using of engineered nanomaterials, which leads to the improvement of new human remedial against pathogenic bacteria modalities. In this work, silver nanoparticles (AgNPs) were prepared by an easy, cheap and low-cost electro-chemical method. The AgNPs were then loaded successfully on to multi-walled carbon nanotubes (MWCNTs) using a modified chemical reaction process. The AgNPs on the MWCNTs were well spread and evenly distributed on the surfaces of the long nanotubes with well-graphitised walls as examined by high-resolution transmission electron microscopy. X-ray diffraction and transmission electron microscopy were used for sample characterisation. Good dispersion of AgNPs was obtained on the surface of MWCNTs, resulting in an efficient reactivity of the carbon nanotubes surfaces. Finally, the antibacterial activity of AgNPs/MWCNTs hybrid was evaluated against two pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus aureus exhibited excellent activity.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Nanotubos de Carbono , Antibacterianos/química , Bactérias/patogenicidade , Escherichia coli , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/microbiologia , Nanotubos de Carbono/toxicidade , Pseudomonas aeruginosa , Prata/química , Prata/farmacologia , Staphylococcus aureus , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...